| COMPUTER SUBJECT:      | BASIC ML CONCEPTS                     |
|------------------------|---------------------------------------|
| ТҮРЕ:                  | GROUP WORK ASSIGNMENTS/DISCUSSION     |
| <b>IDENTIFICATION:</b> | CHAPTER 6/MICL                        |
| COPYRIGHT:             | Michael Claudius                      |
| LEVEL:                 | EASY                                  |
| DURATION:              | 60 min                                |
| SIZE:                  | 3 pages max!!                         |
| <b>OBJECTIVE:</b>      | Understanding decision trees elements |
| <b>REQUIREMENTS:</b>   | ML Ch. 6                              |
| COMMANDS:              |                                       |

## **IDENTIFICATION: CHAPTER 6/MICL**

## ML Chapter 6 Assignments in Decision Trees

The following assignments are as usual to be solved in smaller groups (2-4 persons),

Assignment 1 What is a decision tree?

Assignment 2 N/A

<u>Assignment 3</u> Give some examples where decision trees are applicable ?

## Assignment 4

What is the approximate maximum depth of a Decision Tree trained (without restrictions) on a training set with one million instances?

What is the approximate maximum depth of a balanced Decision Tree trained (without restrictions) on a training set with one million instances?

Is it a good idea to utilize the maximum depth?

<u>Assignment 5</u> Compare a node's Gini impurity with its parent's Gini-impurity? Is it generally lower/greater, or always lower/greater?

<u>Assignment 6</u> If a Decision Tree is overfitting the training set, is it a good idea to try decreasing max\_depth?

<u>Assignment 7</u> If a Decision Tree is underfitting the training set, is it a good idea to try scaling the input features?

Assignment 8

If it takes one hour to train a Decision Tree on a training set containing 1 million instances, roughly how much time will it take to train another Decision Tree on a training set containing 10 million instances? Tip, you should find a formula describing this..... $O(n \ge n \ge log(m))$ 

Assignment 9 If your training set contains 100,000 instances, will setting p

If your training set contains 100,000 instances, will setting presort=True speed up training?

<u>Assignment 10</u> We shall now compare entropy vs impurity.

Take a look at formulas the figure below.

Equation 6-1. Gini impurity  $G_{i} = 1 - \sum_{k=1}^{n} p_{i,k}^{2}$ In this equation: •  $p_{i,k}$  is the ratio of class k instances among the training instances in the *i*<sup>th</sup> node. Equation 6-3. Entropy  $H_{i} = -\sum_{\substack{k=1\\p_{i,k}\neq 0}}^{n} p_{i,k} \log_{2} (p_{i,k})$ 

What is the Gini impurity function used for ? What is entropy used for?

Look at the left leaf in the right subtree of the decision tree figure 6.1 below:



Verify Geni impurity  $G_2 = 0.168$ . 1 -  $(49/54)^2$  -  $(5/54)^2 = 0.168$ Calculate the entropy (I suggest you to use  $\log_{10}$  and not  $\log_2$ ),  $H_2 =$ 

## Assignment 11

Take a look at the CART cost function, J, for a single training instance in equation, 6.2 below.

Equation 6-2. CART cost function for classification  $J(k, t_k) = \frac{m_{\text{left}}}{m}G_{\text{left}} + \frac{m_{\text{right}}}{m}G_{\text{right}}$ where  $\begin{cases}
G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\
m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases}$ 

Calculate the cost, J, for the right subtree of the decision tree figure 6.1 below:





<u>Assignment X deprecated</u> We shall now compare entropy vs impurity by another example

Take a look at formulas the figure below. What is the Gini impurity function used for ? What is entropy used for?